CPAD 2021

Virtual Event @ Stony Brook University, March 18-22, 2021

JAYR.

Time measurements using Ultra-Fast Silicon Detectors with a 120 GeV proton beam for the TOPSiDE concept at the Electron-Ion Collider

MANOJ JADHAV

Physics Division Argonne National Laboratory WHITNEY ARMSTRONG, IAN CLOET, SYLVESTER JOOSTEN, JESSICA METCALFE*, ZEIN-EDDINE MEZIANI

Physics Division (*HEP Division) Argonne National Laboratory

SIMONE MAZZA, HARTMUT SADROZINSKI, BRUCE SCHUMM, ABRAHAM SEIDEN

Santa Cruz Institute for Particle Physics University of California Santa Cruz

18 - 22 March 2021 Stony Brook, NY

Outline

- ➤ Introduction to UFSDs
 - ➤ Motivation for Ultra-Fast Silicon Detectors (UFSD)
 - ➤ UFSD for TOPSiDE at the Electron-Ion Collider
 - ➤ Timing Measurements
- ➤ LGAD Test Setup
 - ➤ LGAD Measurement Setup
 - ➤ Testing of LGADs at the Fermilab Test Beam
- ➤ Results and Summary
- ➤ Outlook

CMS Simulation: HL-LHC beamspot - <N_ > = 140

Motivation for UFSDs

- One bunch crossing with \sim 50 overlapping events recorded by the CMS experiment in 2012
- * The situation will substantially change at HL-LHC - the order of 150-200 events per bunch crossing
- * The time-dimension improves the reconstruction process by considering only time-compatible hits
- Discarding those hits that cannot be associated to a track.
- Particle Identification using Time-Of-Flight method

UFSD for TOPSIDE at EIC

- Low-Gain Avalanche Diode (LGAD)
 - * Internal gain layer $(n^{++}-p^{+}-p-p^{++})$
- High E-field in gain region
 - Multiplication process
 - Provides gain of 10-70 w/o breakdown
- Electron-Ion Collider: Polarized ep, eA collider
 - Centre of mass energies up to ~140 GeV
 - Luminosity $\sim 10^{33}$ - 10^{34} cm⁻²s⁻¹
- Measurement and identification of particles
 - Silicon tracker + Calorimeter 5D info
- Silicon sensor with time resolution $\sim 10 \text{ ps}$
 - kaon-pion separation up to 7 GeV/c

Timing Measurements

Time resolution of the Silicon detector can be expressed as contribution of,

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{Jitter}^2 + \sigma_{LandauNoise}^2 + \sigma_{Distortion}^2 + \sigma_{TDC}^2$$

- Timing capabilities of the silicon detector are characterized by signal at preamplifier output and TDC binning
- Time of arrival is set when signal crosses the comparator threshold
- Timing resolution is measured as RMS of the timing difference (or TOF of a MIP) between the device-under-test (DUT) and the trigger.

A simple time-tagging detector

Timing Measurements

Time Walk: the voltage value V_{th} is reached at different times by signals of different amplitude

$$\sigma_{TimeWalk} = \left[\frac{V_{th}}{\mathrm{d}v/\mathrm{d}t}\right]_{\mathrm{RMS}}$$

Constant fraction discriminator (CFD) with TOA defined at % of signal amplitude reduces time-walk contribution

* **Jitter:** variation in time caused by the noise in the system

$$\sigma_{Jitter} = \frac{Noise}{\mathrm{d}V/\mathrm{d}t}$$

The noise is summed to the signal, causing amplitude variations

The predominant contribution to the timing resolution

WF2 Simulation

Timing Measurements

- **Landau Noise:** introduced by a particle's non-unit charge deposition along its passage Decreases with thickness of the sensor Jitter and Landau noise contribute almost equally
- **Distortion:** The signal distortion is negligible in silicon for the saturated drift velocity and uniform weighting field.
- **TDC:** The TDC effect is minimal in most of the cases

Thinner Sensor => faster rise time => larger slew rate

$$\sigma_{TDC} = \frac{TDC_{bin}}{\sqrt{12}}$$

The time resolution is minimized by maximizing the slew rate dV/dt of the signal and minimizing the noise

We need large and short signals!

LGAD Measurement Setup

- **β-Telescope**
 - Lab bench setup with Sr⁹⁰ source
- Single channel readout board
 - 10×10 cm²; impedance of 50Ω
 - Wide bandwidth 2 GHz and gain 10
 - Total trans-impedance of 4700Ω
 - * The amplifier is followed by an external commercial amplifier with gain 10
- Signal acquisition
 - High Voltage Power Supply CAEN DT1471ET
 - KEYSIGHT E3620A DC low voltage power supply
 - KEYSIGHT DSOS204A infiniium 4-Channels

Measurements at -30 °C using FP89-ME Julabo Chiller

Fermilab Test Beam Set-up

- Proton Beam with momentum 120 GeV
- Sensors HPK 1.2 (35μm), 3.1(50μm) were tested
- In collaboration with UCSC and BNL groups

Results and Summary

- Normalized signal amplitude vs. Bias Voltage
- Charge Multiplication increases with bias voltage increasing the Gain
- Signal Amplitude, Signal to Noise Ratio, Jitter, Rise Time as function of voltage bias and temperature

Average Signal Shape

Results and Summary

- Timing resolution for 3 layers of LGADs
- Timing resolution improves at low temperature but restricted by the lower breakdown voltage
- Very short rise time of \sim 350-400 ps were obtained
- Achieved timing resolution of $14.31 \pm 1.52 \text{ ps}$
- M. Jadhav et al., arXiv:2010.02499; Accepted at JINST

Outlook

Argonne Micro-Assembly Facility - clean room

- **Probe Station**
- Thermal Chamber
- Wire-Bonders
- SmartScope ZIP for Metrology
- 3D printer
- ATLAS telescope and LGAD setup

Ongoing Development

- Designing a telescope structure for multichannel readout system
- Upgrading DAQ from software based CFD to digitizer based: Beyond DSO trigger
- R&D of LGAD sensors and modules
 - Goal is to reach 10 ps of timing resolution
 - Testing CFD read-out boards designed at Argonne
 - Monolithic LGAD simulations and designing
- Analysis of data collected at Fermilab test beam facility with 120 GeV proton for different AC-LGADs with multi-channel read-out boards.
- Argonne is part of LGAD consortium for EIC

Thank You!

